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Abstract: Computational modeling techniques and computer simulations have become a routine in biological sciences 
and have gained great attention from researchers. Molecular dynamics simulation is a valuable tool towards an 
understanding of the complex structure of biological systems, especially in the study of the flexibility of the biological 
molecules such as peptides or proteins. Peptides play a very important role in human physiology and control many of the 
processes involved in the immune system response. Designing new and optimal peptide vaccines is one of the hottest 
challenges of the 21st century science and it brings together researchers from different fields. Molecular dynamics 
simulations have proven to be a helpful tool assisting laboratory work, saving financial sources and opening possibilities 
for exploring properties of the molecular systems that are hardly accessible by conventional experimental methods. 
Present review is dedicated to the recent contributions in applications of molecular dynamics simulations in peptide 
design for immunological purposes, such as B or T cell epitopes. 
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INTRODUCTION 

 Discovering new effective drugs is one of the biggest 
scientific challenges of our time. This target has become a 
field for joint efforts from both industry and academia as 
well as from both public and private sectors of the society. 
The completion of the human genome project raised great 
expectations about drug discovery. However, the elucidation 
of human genes did not mean that the function of gene’s 
products would be completely understandable. Gene 
encoded proteins may have extremely different properties: 
they may be globular or may be not, they may be water 
soluble or interact with membranes, they may be carriers, 
enzymes, receptors etc. Furthermore, they undergo numerous 
post-translation modifications that alter their chemical 
component. Finally, proteins have one unique characteristic: 
they are not simple polymers or just a sequence of building 
blocks but they have 3D configuration that matters a lot in 
their function. Proteins can also break into small pieces: the 
peptides. Even though cells can produce peptides, 
proteolytically derived peptides play a very important role in 
human physiology by triggering the immune system 
response and by interacting with various receptors, such as 
antibodies and TCRs (T cell receptors) after loading to MHC 
(Major histocompatibility complex) molecules. There is an 
increasing interest in using peptide or peptide-based drugs 
[1-3]. Some endogenous peptides have been also used as 
drug targets [4]. Peptides are even more flexible than 
proteins in solution (for an example see ref. [5]). However, 
protein receptors can recognize precisely these highly mobile 
molecules and form stable complexes. Protein receptors can 
be flexible as well [6-8]. Targeting these complexes, thus 
trying to produce peptides that bind better or peptides that 
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antagonize the native binders is the aim of the peptide 
science. 

 The task of finding the optimal ligand position within a 
receptor is called docking [9]. However, in case of peptides 
and proteins, docking faces another problem: peptide’s 
flexibility [10, 11]. Managing peptide and protein flexibility 
in docking problems is not a trivial task [10, 11] and 
computational methods offer a framework to tackle this 
problem. 

 Computational methods are extensively applied in 
biological research and drug discovery [12, 13]. Molecular 
dynamics computer simulation is a well documented 
technique to study the structure and function of biomolecules 
[11-16]. More than three decades have passed since the first 
publication on computer simulation of BPTI (Bovine Protein 
Trypsin Inhibitor) molecular dynamics [14]. MD (Molecular 
dynamics) simulations can contribute to a deeper and more 
detailed understanding of particle motion as time evolution 
properties. Experiments may offer a solid background for 
comparison and validation of results obtained from 
simulation studies, but there are specific system properties 
that are hardly accessible through experiments [15]. In cases 
where specific atomic motions are of interest, MD 
simulations have a lot to offer [16]. This information is 
profitable, despite the approximations and limitations [17, 
18] caused by the use of force fields [19, 20], because the 
user can “play” with the parameterization in order to adapt 
the methodology to a particular problem. In general, MD 
simulations can be applied in three areas [21]: 

1. conformational sampling. 

2. studying equilibrium properties and to obtain values 
of thermodynamic related properties. 

3. studying dynamics of a system. 

 In cases 1 and 2, MC (Monte Carlo) simulations can be 
used as well, while in case 3 only MD simulations can be 
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used. MD simulations have been used extensively for 
assessment of peptide design, such as epitope prediction [22] 
or vaccine design [23-27], enzyme mimicking peptides [28-
31] or folded peptides [32-36]. The application of MD 
simulations has been recently connected with patient-specific 
decisions-makings [25]. In the current review, I will try to 
highlight some important case studies of peptide/protein 
complexes related to immune system. There are obviously 
other than peptide/protein complexes (like protein/protein) 
that are of interest in immunological research. For an 
excellent review of application of MD simulations in this 
field the reader might see ref. [26]. All the contributions 
reviewed here were carried out (at least partly) with 
application of MD simulations. 

MOLECULAR DYNAMICS SIMULATIONS 

 Classical molecular dynamics simulation is certainly an 
approximation of a physical system such as a peptide or 
protein. From an experimentalist point of view, it is fiction 
aspiring to reproduce reality. While this is true, it must be 
noted that carefully performed MD simulations can add 
significant value in biomolecules of scientific interest. 
Despite all the inherent approximations, MD simulations can 
perform very well when certain assumptions are met. In 
general, MD solves the Newton’s equation of motion of a 
system: 
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where the last two double sum terms stand for the van der 
Waals and electrostatic interactions of the system. Specific 
implementations of particular MD packages may have 
altered or extra terms, such as hydrogen bond potentials. 

 Commonly used software packages in biomolecular 
simulation are AMBER [37] CHARMM [38] NAMD [39] 
GROMOS [40] and GROMACS [41]. GROMACS and NAMD 
have gained considerable popularity during latest years, mainly 
because they are freely available for academic users. These 
simulation packages come along with analysis tools, which can 
be very time consuming sometimes. There is also a continuous 
interest in developing MD analysis tools that facilitate certain 
post-simulation tasks [42, 43]. It is worth noting that storing and 
managing MD results is not a trivial task. Full solvated MD 
trajectories can occupy several Gbytes of disk space and a 
considerable amount of physical memory is needed to perform 
analysis tasks. Current evolution in desktop computers power 
has contributed a lot to the application of MD simulations. 

 It is possible from MD simulation results to calculate 
macroscopic properties as weighted averages: 

A = i( )A i( )
i

           (3) 

 Which correspond to the continuous limit of: 

A = A( )( )d            (4) 

 Current trend in MD simulations of biomolecules is to 
include solvent representation in the system and to avoid 
vacuum simulations. Continuum models have been used 
extensively in MD simulations [44-46]. However, several 
published works have recognized the importance of explicit 
water inclusion in the simulation setup. 

 There is plenty of topics concerning the details of MD 
simulations. Three of them are briefly presented: a) 
calculating free energy of binding, b) calculating entropy and 
c) accounting the convergence of MD trajectories. 

FREE ENERGY CALCULATIONS 

 MD simulations can be used to extract thermodynamic 
quantities such as G of ligand binding [47-50]. The most 
commonly used technique, namely MM-PBSA (Molecular 
Mechanics Poisson-Boltzmann Surface Area) [47, 51-53] is 
highlighted here (for a detailed review of other techniques 
see ref. [47]). If two molecules A and B associate and form a 
complex then the free energy of binding can be calculated as: 

Gbind = Gtot (complex) Gtot (A) Gtot (B)          (5) 

where Gtot of each species is: 

Gtot = EMM + GPBSA TSMM            (6) 

where EMM is the total molecular mechanics energy of a 

molecular system; GPBSA is the calculated free energy of 

solvation; T is the absolute temperature and SMM is the 

entropy. The EMM term can be calculated with the use of a 

force field and the coordinates of a molecular system. The 
solvation term GPBSA is split into two terms: the electrostatic 

contribution and the non-polar solvation: 

GPBSA = GPB + Gnp            (7) 

 The non-polar solvation term ( Gnp ) can be calculated with 

the solvent accessible surface area model [54], while the 
electrostatic term corresponds to the Poisson-Boltzmann 
energy term which can be calculated with software such as 
APBS [55]. The entropy term is the most difficult to compute 
[56], although it is not absolutely necessary doing that when 
only relative binding affinities are to be computed [49] and it 
can be estimated by quasi-harmonic analysis [56-58] of the 
trajectory or by using normal mode analysis [59]. 

ENTROPY CALCULATIONS 

 Entropy plays an important role in protein/protein 
association and thus in antigen recognition [59, 60]. 
Conformational changes have been observed in both 
antibodies and antigens after binding [60]. MD simulations 
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offer a very good framework to study these changes from 
entropic perspective for both solvent and solute molecules 
[57]. Recently, Hsu et al. [60] proposed a heuristic formula 
based on the covariance matrix of atom-positional 
fluctuations to assess the configurational entropy. The 
simultaneous evaluation of different interaction modes 
through a decomposition approach is only feasible with the 
knowledge of the atomic trajectory of the system. The 
configurational entropy analysis in terms of combined 
trajectories provides very good estimations of 
thermodynamic properties of biomolecules given that 
sufficient sampling of conformational space has been 
performed. Details of calculations can be found in ref. [60], 
here is a quick presentation of the method: 

 Schliter’s formulation [61] can be used for the 
calculation of the configurational entropy (S): 

 

Strue < S =
1

2
kB ln det 1+

kBTe2

2 M           (8) 

where S is an upper estimation of the true entropy ( Strue ), kB 

is the Boltzmann’s constant, T is the absolute temperature (in 
which the system was simulated), e is Euler’s number,   is 
Plank’s constant divided by 2 ,  is the mass matrix that 
holds on the diagonal the masses belonging to the atomic 
Cartesian degrees of freedom, and  is the covariance matrix 
of atom positional fluctuations: 

ij = xi xi( ) yi yi( )             (9) 

 Two separate trajectories (for example free and complex 
trajectories of a peptide) can be combined, thus one 
trajectory can be appended at the end of the other trajectory, 
and the plot of configurational entropy S against time can be 
used as assessment of the overlap between configurational 
spaces sampled in two simulations [60]. Such trajectories 
have been derived for the backbone (bb) atoms (N, C , C’) of 
the peptide from the last 10 ns of the free (f) and bound (b) 
trajectories. Both appending sequences were applied 

resulting in Sbb
f +b  and Sbb

b+ f calculations, where the bound 

trajectory was appended to the free (f+b), or the free 
trajectory was appended to the bound one (b+f). Plotting the 
calculated values of S from both the combined trajectories 
over time demonstrates the relative size and overlap of 
sampled trajectories. Plotting of S over time after the 
combination of two trajectories results in three cases [60], 
briefly described as: 

1. S increases after appending one trajectory to the 
other, with a jump observed at this point. Thus, the 
two trajectories do not overlap, or there is only a 
small overlap between them. 

2. S evolves smoothly after the appending of the 
trajectories, without an observable perturbation of the 
line of S over time, thus the two trajectories show 
significant overlap. 

3. S curve increases during the time of the first 
trajectory, but decreases a little bit after the 
appending of the second trajectory. Thus, the second 
trajectory samples a smaller configurational space 

than the first one, which also contains the 
configurational space visited by the second one. 

 Such an analysis of the combined trajectories is more 
advantageous than comparing directly the configurational 
entropies of two independent trajectories and it can provide 
information about the extent of sampling overlap (if any) 
between two the trajectories. The coverage of the free 
trajectory with respect to the complex trajectory is: 

Sbb
b+ f Sbb (complex, peptide) Sbb (complex)       (10) 

and the coverage of the bound (complex) trajectory with 
respect to the free trajectory is: 

Sbb
f +c Sbb (peptide,complex) Sbb (peptide)       (11) 

EQUILIBRATION AND CONVERGENCE 

 Convergence is a very important issue in MD simulations 
[62-65]. Smith et al. [63] studied  and  peptides in 
methanol for 5 and 50 ns. They used cluster analysis in order 
to assess the convergence of the simulations. Their study 
suggests that a good convergence criterion is the number of 
different clusters over time. Namely, if this cumulative 
number reaches a plateau then we can assume convergence 
of the simulation. This can be best done if two separate 
trajectories are compared, for example, starting from 
different starting positions. Lyman and Zuckerman have 
studied the Met-enkephalin peptide [65] using the implicit 
solvation method GB/SA for 100 ns. The authors used 
clustering and classification techniques in order to study the 
convergence of MD trajectories. Their results indicated the 
lack of convergence for this small flexible peptide. 
Grossfield et al. [62] studied the protein rhodopsin by 
comparing the results of 26 independent MD trajectories of 
100 ns length. Despite the extensive MD simulation time 
(according to modern standards), the authors argued that 
they could not be able to describe the protein’s dynamic in a 
quantitative manner. Moreover, they mentioned that even 
small loops at the surface of the protein were not well 
sampled. Their results may be a significant caution when 
interpreting results from short MD trajectories. All the 
previous studies indicated that plotting RMSD (Root mean 
square deviation) time series after fitting the MD frames to 
the starting coordinates might not be a good indicator of 
convergence. Thus, if the serious impact of convergence 
upon the implementation of the MD results should be taken 
into account, a significant effort must be done in order to 
ensure that the MD trajectories are well equilibrated and 
converged. 

T-CELL ANTIGENS AND RECEPTORS 

 The use of computational methods in immunology 
research has been termed immunoinformatics [66-68]. These 
techniques mainly aim at producing new vaccines. Vaccine 
discovery requires multidisciplinary combinatorial scientific 
approaches. Computational methods are a significant 
component, where substantial computer power is required 
[25, 66, 69], especially, if structure characterization is at the 
table. However, most of these prediction methods are 
sequence-based scoring function techniques [67], although 
some of them are coupled with other optimization techniques 
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[70]. Despite being very useful, these methods have certain 
limitations. Energy based approaches, such as molecular 
mechanics and interaction energy scoring can add valuable 
information to sequence based results [71-74]. So, MD 
simulations coupled to sequence-based information have 
been utilized in order to enhance the predictive power of the 
peptide affinity calculations to MHC molecules [69, 75]. 
Some interesting paradigms are highlighted below. 

Studies Based on Class I MHC Molecules 

 Molecular dynamics simulations of a peptide bound to 
MHC molecule go back to 1992 [76]. Rognan et al. studied 
the complexation of the influenza-virus-matrix-protein 
(IMP) 58-66 nonapeptide, bound to the MHC HLA-A2. The 
nonapeptide GILGFVFTL was manually docked into the 
binding groove of the HLA-A2 molecule and molecular 
dynamics were performed with AMBER for 100 ps [76]. The 
simulation is very short for nowadays standards, but it was a 
breakthrough for that time. The authors observed several 
peptide/protein interactions and also some water mediated 
hydrogen bonds. Their results seem to be corroborated by x-
ray studies of a relevant HLA-B27 complex [77]. 

 MD simulations have been utilized in order to elucidate 
the difference between HLA-A*0217 and HLA-A*0201 in 
peptide binding. The two alleles differ in three residues at 
positions 95, 97 and 99 in the -sheet floor of the MHC 
binding groove. It was found that Pro at position p3 
occupying the F binding pocket was an optimum residue to 
lock the dominant anchor residue (phenylalanine at position 
p9) tightly into pocket F and to hold the peptide in the 
binding groove, rather than a secondary anchor residue 
fitting optimally the complementary pocket [78]. 

 Another study of HLA-A*0201 binding peptides has 
been performed by Joseph et al. [79]. In this paper a series of 
GP2 peptide (IISAVVGIL) peptide were investigated in 
terms of binding affinity with the HLA-A*0201 molecule. 
The authors modeled various peptide/MHC complexes based 
on the GP2/HLA-A*0201 x-ray structure [80] and performed 
short (0.2 ns) MD simulations to explore the interactions 
between the peptides and MHC molecule. According to the 
resulted MD trajectories, low binding affinity of the GP2 
peptide to the HLA-A*0201 molecule was ascribed to the 
conformational instability of the peptide within the MHC’s 
binding groove. High RMSD values as of 4.5 Å were 
observed, and the peptide quickly lost its initial 
conformation. In consistence with x-ray data [80] the authors 
observed very high mobility of the central region of the 
peptide, residues p5-p7. This facts indicates the low affinity 
of the hydrophilic central floor of the HLA-A*0201 
molecule for the Val5 and Val6 side chains of the peptide. 
The authors also observed a destruction of the Ile9/MHC 
interactions, located at the “F” binding pocket, which are 
crucial for peptide binding. Replacement of Val6 with 
hydrophilic residues (Ser, Thr or Asn) was tried out as a step 
to enhance the binding affinity. Relatively good results were 
obtained only from Val Asp replacement, as tested by 
fluorescein isocyanate-labeled 2m binding experiments. 
MD simulations indicated that the side chain of Asn residue 
was oriented upward and the space created between the 
peptide and the MHC molecule could be filled with water 
that can act as hydrogen bond mediator [81]. Another point 

mutation that was found to enhance peptide binding was 
Gly Phe at position p7. It is well known that Phe residues 
play important role in protein/protein interfaces [82]. MD 
simulations showed that this could be attributed to favorable 
interactions with MHC’s Val152 side chain, which remained 
stable throughout the whole MD trajectory. Double 
mutations of the peptide’s sequence did not reveal any 
improvement on the binding affinity, indicating the non-
additive effect of the mutations. Although the short MD 
simulations of this study should be interpreted carefully, the 
authors were able to identify useful point mutations on the 
GP2 peptide and produce evidence of the enhanced binding 
affinity that corroborates with the experimental data [79]. 

 HLA-B*2705 has been connected with the AS 
(Ankylosing spondylitis) disease [83]. This molecule differs 
by HLA-B*2709 in one single amino acid at position 116 
(located on the floor of the MHC binding groove): HLA-
B*2705 has Asp residue where HLA-B*2709 has His 
residue. It is very interesting that HLA-B*2705 is not 
associated with AS. Both these MHC molecules have been 
crystallized in the presence of the RRKWRRWHL peptide 
[84], derived from the sequence 400-408 of the vasoactive 
intestinal peptide type 1 receptor. The x-ray structures of 
these complexes provide one of the most striking examples 
of peptide’s conformational flexibility in immunology. It 
was found that in the pVIPR/HLA-B*2705 complex the 
peptide adopted the canonical conformation, while in the 
pVIPR/HLA-B*2709 complex the peptide had adopted two 
conformations “A” and “B”. Conformation “A” was also in 
the canonical binding form, while in the conformation “B” 
the peptide was allowed to form a salt bridge between 
peptide’s Arg5 and Asp166 from MHC’s heavy chain. Despite 
the difference in peptide’s conformation, the MHC 
molecules were found in virtual the same conformation [84]. 
However, CTL (Cytoxic T lymphocytes) with specificity for 
HLA-B27 molecules presenting the pVIPR peptide are very 
frequently found in normal individual bearing HLA-B*2705, 
and even more in patients with AS, while they are only 
rarely found in HLA-B*2709 carriers [83]. Fabian et al. 
carried out isotope edited (13C) IR spectroscopic studies in 
order to measure flexibility of the heavy chain of the MHC 
molecule in both HLA subtypes. Their results revealed an 
increased mobility of the -helical segment of the HLA-
B*2705 relatively to HLA*B2709. Since the available x-ray 
structures of the pVIPR/MHC complexes cannot explain 
these differences, the authors carried out extensive (40 ns) 
MD simulations of the complexes [85] using the GROMACS 
software. HLA-B*2705 complex was simulated with both 
conformations found in the x-ray: the canonical and the non 
canonical one. The authors analyzed the MD results from 
RMSF perspective and measured the flexibility of MHC’s 
heavy chain, as compared to experimental derived B-factors 
(Fig. 1). A very interesting outcome of their investigation 
was that the complexes with the pVIPR peptide in canonical 
conformations revealed different flexibilities. The HLA-
B*2705 showed considerably increased backbone flexibility 
of the heavy chain, in comparison with HLA-B*2709, 
despite the fact that the pVIPR/HLA-B*2705 has been 
observed to have grater thermostability relatively to the 
pVIPR/HLA-B*2709 complex. In contrast, the flexibility of 
HLA-B*2705 with peptide in non-canonical conformation 
was found similar to those of HLA-B*2709. So, it can be 
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concluded that the differences revealed by IR spectroscopy is 
due to peptides bound with the canonical conformation. 
While the relevance of the results from this work with the 
association of AS with HLA-B*2705 and HLA-B*2709 
remains controversial, the combination of experimental and 
theoretical techniques by Fabian et al. [85] demonstrated the 
value of these multidisciplinary approaches. 

Class I H-2K
b
 

 Lazoura et al. [86] presented a modeling study of Strp9 
peptide bound to MHC molecule. The SRDNSRIPM 
sequence (Strp9) was modeled based on the x-ray structure 
of the YEA9 (SRDHSRTPM) peptide bound to the same 
MHC molecule. By applying a short MD simulation the 
authors were able to identify the binding mode of the Strp9 
peptide. However, this study revealed that the Strp9 peptide 
binds less tight to the MHC H-2Kb molecule due to lower 
hydrogen bond potential, relatively to YEA9 peptide. They 
have also noted that this happens despite the presence of 
large anchoring residues, Arg-p2 and Met-p9, in addition to 
Arg-p6 in the E pocket, which plays a major role in enabling 
high affinity binding of the peptide to H-2Kb. Thus, the non-
canonical Strp9 peptide appears to bind with the same 
anchoring amino acids utilizing the new-E pocket. However, 
the decreased potential for hydrogen bonding of Strp9 in the 
H-2Kb binding groove is likely to account for the lower 
binding affinity and induction of lower avidity T cells when 
compared to the YEA9 peptide. 

Studies Based on Class II MHC Molecules 

 The YWALEAAAD peptide has been studied in complex 
with HLA-DR4 (HLA-DRB1*0405 allotype) with both MD 
simulations and T cell proliferation assays [87]. Toh et al. 
carried out extensive amino acid substitutions in this 
sequence at positions p3, p5, p7 and p8 (anchor residues). 
The peptides were classified as agonists, antagonists and null 
(non-agonists and non-antagonists) depending on the 
response pattern of T cell clones. The study revealed that a 
Glu residue was absolutely necessary at position p5 for TCR 
recognition, and that even a conservative mutation of 

Glu Asp at position p5 could be recognized differently by 
the TCR. The peptide with Glu residue at position p5 was 
classified as a strong agonist, while the peptide with Asp at 
position Asp was identified as a weak antagonist. The 
authors also identified major conformational shifts in the -
chain helix after residue replacements at position p7, which 
maybe be related with experimental data that show more 
potent effects on p7 replacements. 

 Knapp et al. presented a combined study of peptide/MHC 
interactions utilizing in silico prediction methods, 
competition assays and T cell cultures [74]. Two peptides 
derived from Art v 1 protein, the major mugwort pollen 
allergen, with sequences KCIEWEKAQHGA (12mer, Art v 
125-36) and NKKCDKKCIEWEKAQHGA (16mer, Art v 119-

36) respectively, were modeled in the binding groove of the 
HLA*DRB1*0101 allele. The authors used the NetMHCII 
software to identify Ile27 as the p1 anchor residue for both 
peptides. Then, the peptides were adjusted in the binding 
groove of the MHC molecule and the author performed MD 
simulations (20 ns with GROMACS) combined with energy 
minimization to obtain reliable peptide/MHC structures. 
Analysis of the results based on RMSD time series revealed 
that the complexes were quite stable. The total number of 
hydrogen bonds between the peptides and the MHC 
molecule was also calculated through out the MD 
trajectories. The obtained median values were 10 and 16 for 
the 12mer and 16mer peptides respectively. The 
corresponding normalized values were 0.83 and 0.87, if the 
peptide sequence is taken into consideration. Furthermore, 
calculation of binding affinity score with Xscore revealed the 
values of 7.7 and 9.6 for 12mer and 16mer peptides 
respectively, when the calculations were performed for the 
last 5 ns of MD simulations. From these results it was 
concluded that the 16mer peptide (Art v 119-36) has a stronger 
affinity to HLA-DRB1*0101. Biological experiments with T 
cell lines and T cell clones confirmed this fact. Interestingly, 
the MD simulations revealed another important feature of 
peptide’s conformation: the six residue extension 
(NKKCDK) of the 16mer peptide from the N-terminal part 
of the peptide sequence was folded into a loop-like structure, 
which allowed for extra peptide/MHC interactions, outside 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Dependence of conformational flexibility of the MHC binding groove on HLA subtype. Fabian et al. performed MD simulations on 
HLA-B*2705 and HLA-B*2709, two HLA subtypes that differ only in one residue: Asp vs His respectively at position 116 of the  chain. 
Both molecules were complexed with the RRKWRRWHL peptide (pVIPR). MD runs were performed for 40 ns in explicit water with 
GROMACS. Theoretical values of B-factors were extracted from MD trajectories with according to the formula B=8/3 2 rmsf2. Subfigures 
a) and b) displays the calculated flexibility of the B*2705 and B*2709 binding grooves respectively, while subfigure c) shows the flexibility 
difference. Reproduced after permission from Elsevier Ltd. J Mol Biol (2008), 376:798-810. 
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of the core peptide/MHC binding grove. Zavala-Ruiz et al. 
[88] have also reported an x-ray structure of a hairpin-turn 
16mer peptide bound at MHC class II molecule, that has 
stronger binding affinity in comparison with a 13mer 
peptide, although the extension was from the C-terminal 
part. The study of Knapp et al. [94] corroborate the idea that 
extended peptide sequences may have better binding 
affinities for MHC class II molecules. Moreover, the authors 
demonstrated the use of MD simulations as a useful insight 
tool to peptide/MHC interactions that reveal a lot of 
structural information of peptide/MHC association in 
contrast to sequence based tools. 

 Mantzourani et al. [89] presented an MD study of the 
MBP (Myelin basic protein) epitope 87-99 in complex with 
HLA-DR2b. Along with the native sequence 
(E83NPVHFFKNIVTPR97) the authors also studied two 
antagonist peptides: [Arg91,Ala96]MBP87-99 and 
[Ala91,Ala96]MBP87-99. Despite the relatively short (2 ns) MD 
simulations in explicit water performed with AMBER 
software, the authors were able to determine significant 
conformational changes among the three peptides bound to 
HLA-DR2b. The complexes with the ten lower energies 
were isolated from MD trajectories and calculation of SASA 
was utilized in order to determine whether residues are 
buried or exposed in each conformation. For the native x-ray 
structure complex, no major conformational changes were 
observed over the 2ns simulation. However, for the two 
APLs (Altered peptide ligands) it was found that once bound 
to the MHC, significant changes occurred in the orientation 
of the amino acids that serve as TCR anchors. In both APLs 
the TCR anchor Phe89 is buried in all conformers. TCR 
anchor residue His88 is buried in most of the conformations 
for the [Ala91,96]MBP87-99 complex. This residue was found 
moderately buried in the [Arg91,Ala96]MBP87-99 complex, 
however it was found in a notably different orientation with 
respect to the x-ray structure (Fig. 2). Both human 
autoimmune TCRs primarily recognize the N-terminal, 
unlike all other TCRs that bind over the central portion of 
the peptide. From MD analysis the authors also concluded 
that the peptide action as antagonists comes from the lack of 
the N-terminal part of the native peptide that possibly acts as 
first contact for the TCR. 

Software Tools to Employ Massive MD Simulations 
and/or Analysis of Results 

 Nowadays, there is a considerable effort to assist the 
prediction of peptide binding to MHC molecules with MD 
simulations and to overcome the deficiencies of sequence or 
motif predicted methods. Recently, Todman et al. [69] 
presented a software tool (MHCsim, http://igrid-
ext.cryst.bbk.ac.uk/MHCsim) that allows the automated 
construction of MHC/peptide structure files and the 
corresponding configuration files required to execute an MD 
simulation using NAMD [39]. The system has been made 
available through a web-based front end and stand-alone 
scripts. This can be used to virtually any peptide/MHC 
complex and not only to specific alleles. The authors 
presented thus a framework where one cannot only perform 
MD simulations, but to use these techniques to extract 
binding affinities. This can be accomplished by ABF 
(Adaptive biasing forse), FEP (Free energy pertubation) or 

TI (Thermodynamic Integration) MD simulations. 
Utilization of these methods has considerable cost in terms 
of computational time and power in comparison with 
sequence based methods, however it provides better validity 
of structure based affinity calculations for peptide/MHC 
binding [72]. The authors used the software on four different 
datasets, each containing 15 combinations of structures. In 
the first dataset, they compared structures of HLA-A*0201 
generated by MHCsim using the A*1101 templates against 
genuine A*0201 structures. In the second, they compared 
random combinations of A*0201 structures. In the third 
dataset, they compared random combinations of MHC Class 
I structures and in the fourth dataset they compared random 
combinations of MHC Class II structures. Then, by 
performing MD simulations, the authors were able to 
reproduce peptide/MHC structures comparable with the 
known x-ray structures with reasonable precision. It is 
notable that web-based access (http://igrid-
ext.cryst.bbk.ac.uk/MHCsim) to this software tool might be 
very useful to experimentalists [15] with limited training in 
MD simulations, especially at the crucial first step: 
preparation and set up of the peptide/MHC complexes for 
MD simulations. This step involves many human-controlled 
parameters [21] and the wise use of them can affect 
drastically the quality of the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The MBP83-96 peptide bound to HLA-DR2b molecule. 
Superimposition of the ten lowest energy peptide conformations as 
obtained from MD trajectory on the native peptide (colored purple). 
Red color corresponds to exposed regions of the MHC molecule, 
while blue and green correspond to hydrophilic and hydrophobic 
regions respectively. Reproduced after permission from Elsevier 
Ltd. J Mol Graph Mod (2007), 26:471-481 (For interpretation of the 
references to color in this figure legend, the reader is referred to the 
web version of this paper). 

 Another structure-based prediction method of peptide 
binding to MHC class I molecules has been published by 
Fagerbrg et al. [75] based on MD simulations and simulated 
annealing. The authors used an extensive data set of 
peptide/MHC complexes obtained from Protein Data Bank. 
Their method consisted of multiple steps. In the first step, 
after building the initial model, they utilized simulated 
annealing (1300 K) to accelerate the conformational space 
sampling combined with adopted basis Newton-Raphson 
energy minimization. By repeating the dynamics/mini-
mization cycle they obtained 1000 representative conformers 



MD_Peptides_Immunology Current Computer-Aided Drug Design, 2010, Vol. 6, No. 3      213 

of the peptide/MHC complex. Then, they performed cluster 
analysis to the resulted conformers based on RMSD 
calculations. In a third step the authors calculated the 
effective energy of the conformers (see methods of ref. [75] 
for details). 

 Predicting the MHC binding affinity of a peptide is not a 
trivial task, neither experimentally nor computationally. 
Todman et al. [69] suggested a general method for 
calculating G of binding based on MD simulations [47]. 
The authors presented a software tool written in Perl that 
enables the construction of any peptide/MHC complex of 
any HLA allotype and the creation of PDB and PSF (Protein 
structure file) files. The user can define the HLA allotype 
and the peptide sequence that is of interest. The software 
tries to model the structure based on the available x-ray 
structures. After finding the closest match by pairwise 
alignment the software performs any required mutation to 
match the user defined input sequence of both the peptide 
and allotype. The complexes are suitably solvated and after 
defining few parameters the software can produce the 
NAMD configuration files that are used for MD or ABF 
simulations. Users that have access to big computer clusters 
or grid services can find this application particularly useful, 
since it allows the automation of structure preparation and 
MD configuration of multiple peptide/MHC complexes that 
can be studied in order to calculate the G of binding. This 
method can potentially substitute the heavy laboratory work 
needed to define a T-cell epitope of protein with the method 
of the overlapping peptides. 

Water Structure in Peptide/MHC Complexes 

 Beyond the prediction of peptide binding to MHC 
molecules, MD simulations have also been used in order to 
elucidate the role of water in peptide/MHC association. The 
peptide ILKEPVHGV derived from the reverse-transcriptase 
sequence of HIV was used in a model study, in complex with 
the MHC-HLA-A2 [73]. In this study, Petrone and Garcia 
performed MD simulations of the peptide/MHC complex as 
well as the MHC molecule without the peptide in order to 
determine the role of the solvent in peptide binding, 
something that has been noticed in other cases as well [90, 
91]. To quantify their results they introduced the calculation 
of the instantaneous water calculation number, by calculating 
the number of water molecules within a 3.5 Å cutoff from 
water oxygen atom, at every saved snapshot from the MD 
trajectory. Basically, this is first hydration shell and typically 
it has a value of approximately 4-6 for bulk water. In the 
proximity of protein atoms this number drops, and we can 
consider a water molecule as protein-bound, if this number is 
less than 3. Analysis of the MD trajectories revealed very 
interesting facts about the role of water at the peptide/MHC 
interface. Some other water molecules were found to retain 
stable positions within the peptide/MHC complex for at least 
1 ns or longer. These water molecules made specific 
interactions between the peptide and the -sheet floor of the 
MHC molecules. Some other were molecules were bound at 
the charged N- and C- terminals of the peptide, thus 
facilitating the binding without being specific to any 
particular peptide residue. Free energy calculations also 
revealed that water molecules affect the binding G. In 
comparison with the simulation of MHC molecule in the 

absence of the peptide, the authors concluded that the water 
molecules assisted the MHC molecule to exhibit plasticity in 
the absence of the peptide and to adapt the conformation of 
side chain atoms to maximize peptide contacts. 

Peptide Free Models of MHC Molecules 

 There is a growing interest to construct peptide-free 
MHC models. Recently, Painter et al. [92] presented a 
molecular modeling study coupled with extensive MD 
simulations of the HLA-DR1 MHC molecule. They used the 
x-ray structure of the class II MHC molecule complexed 
with the PKYVKQNTLKLAT peptide (PDB code: 1sje) to 
generate a model of peptide free MHC molecule by 
manually removing the peptide from the PDB file. The 
protein was solvated in a water box, and after 
minimization/equilibration, the system was subjected to a 60 
ns MD simulation with GROMACS. The authors also took 
care of the convergence of the simulation [93]. Their study 
revealed an interested future of the MHC molecule: without 
the loaded peptide the 50-59 region of the MHC molecule 
gradually lost its helical conformation and moved towards 
helix  of the MHC molecule. Thus this part of protein 
occupied the position of the peptide region p1-p4, adopting 
also the peptide’s conformation. This theoretically produced 
result was corroborated by binding affinity experiments with 
the conformationally restricted LB3.1 monoclonal antibody 
[92]. 

 A similar study by Yaneva et al. [94] was published 
almost simultaneously with the previous one. The authors 
performed MD simulations of the HLA-DR3 molecule in the 
absence and presence of the peptide 
PVSKMRMATPLIMQA (PDB code: 1a6a). Simulation of 
this MHC class II molecule in peptide free form also 
revealed significant conformational mobility of the helical 
region in the peptide binding groove. However, in contrast 
with the 50-59 region in the HLA-DRB1 case, the most 
flexible part of the HLA-DR3 molecule was located in the 

58-69 region, in the proximity of the p4-p6 peptide binding 
sites. 

PEPTIDE – ANTIBODY COMPLEXES 

 Antibodies are capable to recognize a big variety of 
molecules [95]. Antigen binding topography [96] has been 
attributed to six fragments that constitute the 
Complementary Determining Regions (CDRs). 
Complexation of antibodies with antigens has been also 
associated with the so called hot spots [82, 95, 97]. There are 
several examples of applications of MD to immunogenic 
peptides [98, 99], although, simplified models for studying 
peptide/antibody complexation have been employed as well 
[100]. Some of the most interesting examples are given 
below. 

Peptide Epitope Mimicry 

 Myasthenia gravis is caused by autoantibodies against the 
AChR (Nicotinic acetylcholine receptor) of the 
neuromuscular junction and a small region on the 
extracellular part of the AChR alpha subunit seems to be the 
major target of the anti-AChR antibodies. The major loop of 
the overlapping epitopes for all testable anti-MIR (Major 
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immunogenic region) monoclonal antibodies was localized 
within residues 67-76 (WNPADYGGIK for Torpedo and 
WNPDDYGGVK for human AChR) of the alpha subunit 
[101, 102]. The N-terminal part of the alpha 67-76 peptide is 
the most critical one, where residues Asn68 and Asp71 are 
indispensable for binding. Orlewski et al. [103] presented 
acombined NMR (Nuclear magnetic resonance) and MD 
study of an analogue peptide [Ala78]MIR, in free and 
antibody bound states. In consistency with previous reports 
[101], the authors reported the conformationally controlled 
binding of the [Ala78]MIR by monoclonal antibodies. It was 
found that the N-terminal part of peptide formed a type I -
turn in the free state and a type III -turn in the bound state. 
This conformational change has been stated as crucial in the 
binding process. In continuation of this work, Kleinjung et 
al. [103] have studied the complex between an Fv antibody 
fragment and a peptide analogue [Gly70,Nle76]MIR of the 
acetylcholine receptor with 2D-NMR, homology and 
molecular modeling. The authors performed also restrained 
MD simulation for 750 ps of the peptide/antibody complex 
based on their NMR derived NOE interactions. This served 
as a relaxation process after homology building of the 
antibody structure and docking of the peptide into antibody’s 
binding site. Certain parts of the peptide’s sequence were 
found quite mobile within the antibody’s binding site, 
although, the biggest flexibility showed the H3 loop of 
antibody’s CDRs [103]. The [Gly70,Nle76]MIR peptide was 
found to retain its -turn structure at the N-terminal part as in 
the [Ala78]MIR case ant in agreement with other 
peptide/antibody structures [104]. However, the authors 
observed a destruction of the type III -turn due to a different 
backbone conformation adopted by the Gly70 residue. The 
flexibility of this residue should have contributed to binding 
enhancement (Fig. 3). It has to be noted that the antibody 
was raised against the human AChR, but also binds the 
[Gly70,Nle76]MIR peptide with high affinity. Thus, the 
peptide’s conformation probably mimics well the 
conformation of the protein at the 67-76 region, an essential 
prerequisite for peptide immunogenicity [105]. In these 
studies MD simulations helped to identify structural 
elements of the peptide’s conformation and to build up a 
model of the antibody/antigen complex. 

Thermodynamics of Peptide’s Immunogenicity 

 MD simulations have been also used in order to study the 
thermodynamics of peptide’s immunogenicity. It is expected 
that antibodies raised against peptides should recognize also 
the corresponding region of the native proteins [106]. This 
can be done by assuming that a peptide can adopt a stable 
conformation in solution, similar to that of the corresponding 
region in the native protein. It has to be noted that it is not 
the binding to an antibody that is important for the design of 
immunogenic peptides, but rather the molecular mimicry of 
the unbound peptide to the cognate antigen [105]. 
Sometimes this can be accomplished by peptide cyclization 
as shown by Oomen et al. [98]. Camacho et al. [107] 
presented an MD study coupled with immunization 
experiments involving peptides (Fig. 4) from the HRS 
(Histidyl-tRNA antigen) autoantigen. Their study aimed 
establishing a thermodynamic basis for linking peptide 

immunogenicity with native protein motifs. According to 
their analysis, peptide conformations can be classified in 
three categories according to the free energy ( Gx) of their 
protein-like motifs: a) GX<0 kcal/mol that can form the 
same number of peptide-antibody complexes, b) GX>0 
kcal/mol, GX<8 kcal/mol that have a significantly reduced 
capability of inducing antibodies relatively to native proteins 
and c) GX>8 kcal/mol for unstable “non-immunogenic” 
peptides. Within this context, Camacho et al. [107] 
employed 10 ns MD simulations studies of ten 18mer 
peptides derived from the N-terminal part of the HRS 
autoantigen in searching for structural stability of the 
corresponding peptides. The authors analyzed the MD results 
from RMSD perspective (in relation with the starting 
conformation) and the number of hydrogen bonds that 
stabilized the peptide’s structure. Then they classified the 
peptide’s stability and related the results with ELISA 
experiments. It was found that peptides with relatively stable 
conformations, that shared the same conformational 
characteristics of the native protein, were capable of 
inducing anti-protein antibodies. The authors were also able 
to fully correlate the biological activity of the peptides with 
their structural stability, demonstrating the power of MD 
simulations as predictive tool of immunogenicity. For 
example, peptides 9 (sequence 81-98 of HRS) and 10 
(sequence 91-108 of HRS) showed considerable difference 
in antibody binding, with peptide 9 having much greater 
affinity than peptide 10 (Fig. 4). This happens despite the 
fact that both peptides share the highly immunodominant 
proline containing epitope of the 93-96 region. The ELISA 
results were fully compatible with the MD studies: the 
peptide 9 retained its conformational stability while peptide 
10 was considerably destabilized during MD trajectory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The peptide WNPADYGGIK corresponding to the 67-76 
region of the AChR sequence has been modeled in the presence of a 
monoclonal antibody. NMR studies and MD dynamics simulations 
were utilized in order to explore the dynamics and the flexibility of 
the binding mode. The scale of the backbone ribbon rendering is 
proportional to the mobility of the backbone. Reproduced after 
permission from John Willey & Sons Inc, Biopolymers (2000) 
53:113-118. 
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Cyclization of Peptides 

 Oomen et al. [98] presented a study that best illustrates 
the use of MD simulations for predicting conformationally 
restricted epitopes. In stead of trying to improve binding of 
peptide to antibody, the authors employed MD simulations 
to stabilize to secondary structure of a peptide and to 
enhance its solution conformation to those of the native 
protein. PorA porin protein from Neisseria meningitis has 
been predicted to contain eight surface-exposed loops [108] 
and monoclonal antibodies have been found to react with 
peptide epitopes located at these loops. Moreover the peptide 
TKDTNNNL derived from the 180-187 sequence of PorA 

protein has been crystallized in presence of a Fab fragment 
from a bactericidal antibody specific for PorA P1.16 subtype 
[109] (see http://neisseria.org for naming convections). The 
peptide adopted a -hairpin conformation in the bound state. 
Several peptides were designed in order to stabilize this 
secondary structure via head-to-tail cyclization. The 
designed sequences incorporated the Tyr-Asn-Gly-Lys 
fragment as the contra-turn region to facilitate cyclization 
[110, 111]. Turns are well known structural motif that 
stabilize -hairpin conformation in designed peptides [110]. 
In some cases Tyr were replaced with Cys to facilitate 
conjugation of the peptide with a carrier protein. The 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Camacho et al. extracted 10 18mer peptides from murine HRS sequence as B-cell epitopes and performed MD simulations in order 
to evaluate their structural stability. The figure shows snapshots (every 1 ns) from 10 ns MD simulations of the superimposed peptide 
structures. Reproduced from PloS Comput Biol (2008), 4: e100231. 
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structural stability of the designed -hairpin peptide was 
evaluated by 10 ns MD simulations in explicit water. The 
conformational mimicry of the bound antigen by the cyclic 
peptides was assessed by monitoring the presence of 
characteristic hydrogen bonds. For example the existence 
Asp3:H

N-Asn7:O hydrogen bond that characterized a 3:5 type 
I -turn in the bound to antibody peptide has served as a 
measurement of how similar the peptide conformation was to 
the epitope’s structure (Fig. 5). It was found that two out of 
four studied peptides could not retain the desired 
conformation and they showed no structural stability. The 
third peptide however, retained the desired -harpin 
conformation and the Asp3:H

N-Asn7:O hydrogen bond for 
the 58% of the simulation time. The fourth peptide showed 
considerable backbone flexibility though also partly retained 
the -harpin conformation for 38% of the time. The peptide 
preference for an ordered -harpin structure offered the 
authors a mean to classify the four designed peptides in 
terms of molecular mimicry of the native antigen. Binding 

assay experiments were performed in order to evaluate the 
peptide preference for antibody binding. It was found that 
biological activity followed precisely the pattern assumed 
from MD simulations. Thus, the peptide showed the 
maximum -harpin stability had the highest binding activity. 
Moreover this peptide was used in immunization 
experiments and was proved to elicit antibodies that activate 
the complement system resulting in bacteria killing. The 
work by Oomen et al. [98] provides a solid framework of 
rational structure-based design that seems to be superior to 
other trial-and-error methods [112]. In this approach, 
accounting the peptide flexibility seemed to play a crucial 
role, in which MD simulations correctly identified the best 
peptide candidate. It is also an example of -turn 
therapeutics [113]. 

 The same research group repeated the molecular mimicry 
approach to another case, two years later. Oomen et al. [114] 
presented the x-ray structure of the epitope peptide Ac-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Computational structure-based approach for design and evaluation of conformationally restricted peptide based vaccines presented 
by Oomen et al. The X-ray structure of the antibody/peptide complex in stereoview (a) and backbone conformation of the TKDTNNNL 
peptide (b) with a type I  -turn at residues 3DTNNN7 (corresponding to residues 182-186 in PorA). Four peptide-vaccine A, B, C and D 
candidates were designed to mimic this conformation of the  -turn peptide, shown in (c). Peptide sequences are shown with one-letter code 
for amino acids. To reduce the flexibility, the peptides were conformationally restricted by head-to-tail cyclization, adding some extra 
residues to construct the contra-turn with high propensity to form a  -turn. Molecular dynamics simulations of the peptides were employed to 
assess the conformational mimicry of the peptides to the crystallographically observed  -turn. Snapshots of the peptides during the molecular 
dynamics simulation run were superimposed on either epitope-turn (red and yellow) or contra-turn (green). The conformational mimicry is 
assessed by the presence in the simulation of the desired backbone (red and green dotted lines) and undesired (black dotted lines) hydrogen 
bonds; the percentages of simulation time for observed hydrogen bond formation are included in the representation of the designs. 
Reproduced after permission from Elsevier Ltd., J Mol Biol (2003), 351: 1070-1080 (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this paper). 
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HVVVNNKVATH-NH2 bound with the anti-P1.4 antibody 
MN20B9.34. The bound peptide was found in -hairpin 
conformation stabilized with three intramolecular hydrogen 
bonds. Based on the previously analyzed successful 
approach, the authors designed two cyclic peptides, with 
sequences NGKVNNKVAY and dCGVVNNKVAT 
respectively, in order to mimic the peptide’s -hairpin 
conformation in solution. This was performed with the aim 
to elucidate antibodies capable of cross-reaction with the 
original pathogen. The authors performed MD simulations 
for 5 ns of both in order to test their conformational stability 
and their preference for -hairpin conformation. It was found 
that both peptides retained the desired -harpin conformation 
and the initial -turn structure around the NNKV fragment 
for substantial amount of the simulation time. Both cyclic 
peptides were synthesized and tested with immunization 
experiments (immunization of 8 mice). The results obtained 
from these immunological studies were widely divergent. 
For the first peptide, sera from three mice were found with 
high bactericidal titres, while for the second peptide, four 
mice responded to immunization but with lower titres. 
Interestingly, the subset of mice that responded to peptide 1 
immunization produced antibodies capable of killing the 
bacteria. The lack of universal response to peptide 
immunization is not well understood and can be attributed to 
poor molecular mimicry of the peptides to the conformation 
of the pathogen. This is something that leaves place for 
further improvement of the peptide’s immunogenicity 
through conformational stability. MD simulations might 
have a lot to offer towards this target, perhaps by prolonging 
the simulation time or by testing more compounds. 

Cyclization may not be a Panacea 

 Another interesting example of peptide/antibody 
interactions comes from a peptide bound to CAMPATH-1H 
antibody, a humanized [115] monoclonal antibody against 
the CD52 antigen [116]. CAMPATH-1H has been used 
successfully for the treatment of leukemia, autoimmune 
disease and transplant rejection [117, 118]. The CAMPATH-
1H antibody has a highly basic binding site. It has been 
shown that the antibody binds the peptide mimotope 
T1SSPSAD7, and the complex structure has been determined 
by x-ray [119]. The peptide’s conformation in bound state 
was found to be type I -turn around Pro5-Ser6 residues. In 
contrast to other cases, where the CDR-H3 is essential to 
antigen binding [96], the CDR-L3 of CAMPATH-1H 
dominates antigen binding [119]. MD simulations have been 
performed for the peptide/antibody complex as well for the 
free peptide in explicit water to determine the stability of the 
-turn conformation [120]. The MD simulations confirmed 

the importance of electrostatic interactions between peptide’s 
Asp7 residue at C-terminal and antibody’s ArgH52 residue. 
Moreover, the turn structure in the central part of the peptide 
was very well conserved during the 10 ns of the simulation. 
On the contrary, when the peptide was simulated in the free 
state it abolished the turn structure quickly. The initial 
conformation was retained for less than 5% of the 50 ns 
trajectory. This study demonstrated the well known induced 
fit procedure for antibody binding process [95], although the 
conformational change applies here to the antigen and not to 
the antibody. The turn structure of the T1SSPSAD7 peptide 
when bound to the CAMPATH-1H antibody and the close 

proximity of Thr1 and Ala6 side chains in peptide’s 
conformation, led to the assumption that a possible 
cyclization through these side chains could stabilize the -
turn structure, and thus, enhance the binding properties of 
the T1SSPSAD7 peptide. The peptide’s residues Thr1 and 
Ala6 have been replaced with Cys and a disulfide bond was 
imposed. MD simulations in free and bound state have been 
performed in order to assess the feasibility of the model as 
well as the stability of the -turn around Pro4-Ser5 fragment 
[121]. MD simulations showed the stability of the -turn for 
considerable amount of simulation time (>90%) in both free 
and bound states. The similarity of the peptide’s backbone 
conformation in these two trajectories has been measured in 
terms of backbone entropy with a method presented by Hsu 
et al. [60]. The entropy difference was estimated 0.15 
kJ/K/mol, a relative moderate value, indicating that the two 
sets of conformations (free and bound states) do not differ 
dramatically [121]. However, the conformational similarity 
of the cyclic peptide between the free and the bound states 
did not resulted in better binding affinity. MD simulation of 
the bound compound showed considerable decrease of 
hydrogen bonds between the peptide and the antibody during 
simulation time. Moreover, calculation of BSA (Buried 
surface area) between peptide and antibody showed a 
decrease of approximately 25% during the MD simulation. 
Conformational transition that led to this BSA reduction 
occurred after the first 2.5 ns of the simulation (total time 20 
ns) underlying the importance of long time sampling during 
MD. Taking all these into consideration, cyclization led to 
more stable peptide structure in the free state, but resulted in 
lowering of its binding affinity [121]. This is an example of 
how carefully structure stabilization of flexible peptides 
should be interpreted, and how cyclization of peptides 
should not be overemphasized for enhancing the binding and 
immunogenic properties of linear peptides. 

OTHER IMMUNOLOGICAL COMPLEXES 

 Beyond epitope prediction and vaccine design, MD 
simulations have been used in other immunological 
complexes, such as the complement system [122, 123]. 
Human C8 is composed by three genetically distinct 
subunits: ,  and . C8  and C8  form a C8 -  heterodimer 
which is linked through a disulfide bond and this in turn 
associates non-covalently with C8  [124]. Mapping the 
binding sites of C8  complement protein to other C8 
subunits [125] has revealed a 19mer peptide to be 
responsible for C8  binding. A smaller fragment of 11 
residues (indel peptide) was also capable of biological 
activity. Recently, the crystal structure between C8  and the 
indel peptide of C8  sequence has been published [126]. In 
this complex, both Cys40 of C8  and Cys164 of C8  chains 
respectively were substituted by Ala residues. These two 
cysteine residues form the disulfide bond of the heterodimer 
C8 - . The peptide L158RYDSTAERLY168 is a minimal 
sequence from the C8  protein that binds to the C8 . 
Interestingly, it contains the Cys164 residue that forms a 
disulphide bond with Cys40 of C8 , when C8  and C8  
complement protein associate into a heterodimer. In order to 
check this hypothesis and further provide evidence the C8  
association with C8  derived peptide through disulfide bond, 
molecular modeling and MD simulation techniques were 
applied [127]. Starting from the C8 /C8  indel peptide X-
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Ray structure, both Ala164 and Ala40 residues of C8  and C8  
chains respectively were replaced with cysteine residues and 
a disulfide bond was imposed between them. The 
heterodimer complex was subjected to molecular dynamics 
simulation in explicit water in order to extract the dynamical 
properties of association and to examine the stability of the 
proposed disulfide bonded complex. Results revealed that 
the heterodimeric complex is stable, under MD conditions, 
and supported the association hypothesis. Moreover, Slade et 
al. published [128] the crystal structure of the C8 /C8  
complex (Fig. 6). These crystallographic data corroborated 
the association hypothesis and provided a validation 
framework of the MD study and the proposed model. 

CONCLUSIONS 

 The applications of MD simulations in the area of peptide 
vaccine design have been highlighted in this review. The 
main areas of focus of the simulations are: molecular 
modeling of new targets and mutants and binding energetics 
of immunogenic peptides to their cognate receptors. Despite 
being crude approximation of the actual forces in a 
molecular system, force fields used by MD software can give 
a good estimate of the molecular forces that govern the 
dynamics of a system. And it is this dynamic behavior of the 
biological systems that can not be neglected in modern 
computer-aided drug design. 

 In general three main areas of interest in applying MD 
simulations in immunological complexes can be specified: 

1. simulation of an x-ray structure to explore structural 
and energetic features of the binding process 

2. simulation of a mutated protein or complex to explore 
the impact of the mutation to the complex formation 

3. simulation of modeled structure, usually after 
homology modeling of docking 

 In all these three general cases, MD simulations have 
offered a unique insight into structure and function of 
immunological proteins and their complexes. It is expected 
these theoretical techniques will be applied more widely and 
to more sophisticated systems will be studied. The 
appearance of patient-specific simulation in AIDS treatment 
[25] leaves a lot of promises to other areas in clinical 
research related with immunology. 

 Recent advances in supercomputer power have allowed 
the utilization of MD simulations towards computation of 
free energy of binding of big systems such as 
TCR/peptide/MHC complexes [25, 71]. While detailed 
coverage of this topic is not within the purposes of this 
review, it must be underlined that the significance of this 
approach is rather high. Computing thermodynamic values 
from MD simulations that are directly comparable with 
experimentally obtained values should bring theoreticians 
and experimentalists more close [15] in searching for new 
drugs. It is expected that these techniques will be applied 
extensively in the future and that they would contribute 
substantially to the scientific effort for better understanding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). A C8 indel peptide (LRYDSTAERLY) has been modeled in complex with the C8 protein. The x-ray structure was used as initial 
model to mutate two Ala residues into Cys and impose a disulfide bond that it is supposed to facilitate protein/protein heterodimerization in 
C8 /C8 complex formation. MD simulations were performed for 15 ns in order to assess the stability of heterodimer. A) Backbone atoms 
superimposition of the initial (x-Ray) and final (frame 15000) structures. The disulfide link (atoms C , S) is represented with balls. Chain C 
(C8 protein) is represented with green (starting structure) and purple (final structure) ribbons respectively. Chain A (C8 indel peptide) is 
represented with cyan (starting structure) and orange (final structure) ribbons respectively. B) Bundle of ten indel peptide structures, 
superimposed over heavy atoms. One frame every 1.5 ns were obtained. Structures were fitted with RMSD slightly less than 0.06 nm. 
Reproduced after permission from Springer, J Mol Mod (2009) 15:165-171 (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this paper). 
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the immune system and producing more effective drugs and 
vaccines. 
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ABBREVIATIONS 

ABF = Adaptive biasing force 

AChR = Nicotinic acetylcholine receptor 

APL = Altered peptide ligands 

AS = Ankylosing spondylitis 

BPTI  = Bovine Protein Trypsin Inhibitor 

BSA = Buried surface area 

CTL = Cytotoxic T lymphocytes 

FEP = Free energy pertubation 

HLA = Human leukocyte antigen 

HRS = Histidyl-tRNA synthetase 

MBP = Myelin basic protein 

MD = Molecular dynamics 

MHC = Major histocompatibility complex 

MIR = Main immunogenic region 

MM-PBSA  = Molecular mechanics Poisson-Boltzmann  
   surface area 

NMR = Nuclear magnetic resonance 

PDB = Protein data bank 

PSF = Protein structure file 

RMSD = Root mean square deviation 

RMSF = Root mean square fluctuation 

TI = Thermodynamic integration 

TCR = T cell receptor 
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