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The Epstein-Barr virus determinant peptide EENLLDFVRF shows high immunogenicity when pre-
sented by HLA-B*4405 allotype. This fact is accompanied by a cis-trans isomerization of the Leu5-
Asp6 peptide bond upon TCR binding of the pMHC complex. Molecular dynamics simulations of
PMHC/TCR structures, with the EENLLDFVRF peptide in cis and trans conformations have been

employed in order to examine the structure and dynamics of the pMHC complex with such an unu-

Edited by Robert B. Russell

sual conformation. The results, based on MM-PBSA free energy computations as well as buried sur-

face area analysis and interactions at the pMHC/TCR interface, indicate that the TCR binds preferably
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the pMHC complex with the Leu5-Asp6 peptide bond in cis conformation. It is the first time that this
notable conformational feature of T-cell epitope is investigated.
© 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Flexibility in peptide binding by protein receptors is a well
known issue [1]. Targeting this feature of peptides conformation
in immunological complexes can have significant impact in design-
ing successful vaccines [2]. Cis-trans isomerization has been
observed mainly in proline residues in proteins [3,4], although it
can be found in other residues as well [5]. The pore functionality
of a neurotransmitter-gated ion channel at Cys-loop receptor
super-family is a classical paradigm of how cis-trans isomerization
can affect biological binding and activity [6]. In small peptides,
cis-trans isomerization can be influenced by specific side chain
interactions [7], while in proteins it can be modulated by enzy-
matic action [8]. Cis-trans isomerization has been observed in both
B-cell epitopes [9,10] and T-cell epitopes in peptide/MHC com-
plexes [11]. It has been noted that cis-trans isomerization must
be carefully taken into account in predicting peptide conforma-
tions bound to the major histo-compatibility complex (MHC)
molecules [12].

Recently, the X-ray structure of the Epstein-Barr virus
determinant peptide, with sequence E'ENLLDFVRF!°, bound to
HLA-B*4405 molecule (pMHC complex) has been determined
[13], along with the X-ray structure of the pMHC complexed with
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DM1 T-cell receptor (TCR). The authors compared the X-ray
structure of HLA-B*4405EENIDFVRE \yith HLA-B*4402EENILDFVRE gnd
HLA-B*4403EENLLDEVRE % _ray structures and concluded that peptide
flexibility was critical in preferential engagement with HLA-
B*4405 in comparison to HLA-B*4402/03, resulting in finetuning
of T cell responses between closely related allotypes. One striking
feature of the peptide’s conformation in pMHC/TCR complex was
the adoption of cis isomerization state in Leu5-Asp6 peptide bond,
while the same bond was found in trans isomerization state in the
pMHC complex.

The rules by which the TCRs interact with pMHC complexes are
not yet clearly understood [14,15], but there is a continuous
increase in our knowledge as more pMHC/TCR complexes appear
in the Protein Data Bank. Currently, there is no other example
described in the literature with peptide in pMHC/TCR complex
possessing a cis peptide bond, after the formation of pMHC/TCR
complex. Of course, cis-trans isomerization might not be consid-
ered a global feature of peptide structure in pMHC/TCR complexes,
and this observation cannot be generalized in all pMHC/TCR
complexes. However, the case described here is notable, as it is
seen in biological affinity experiments [13].

Molecular dynamics simulations have been extensively used in
immunological and pharmaceutical research during past years
[16,17]. It has been argued that this approach can augment our
knowledge gained from experimental research [18,19]. Thus,
extensive molecular dynamics studies of pMHC/TCR complexes
are presented here, with the aim to explore the dynamic properties
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of the peptide’s conformations in the two complexes and to explain
why the TCR prefers to bind a pMHC complex with a peptide in cis
conformation.

2. Methods

2.1. System setup and simulation

Initial coordinates the TCR-HLA-B*4405EENIPFVRE complex were
downloaded from Protein Data Bank [20], access code 3dxa [13].In
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this structure, the o dihedral angle between Leu5 and Asp6
residues is found 16.6°, thus in cis conformation. This complex will
be referred as TCR-HLAP®P hereafter. Another complex, with the
peptide in trans conformation was also modeled in this study.
The peptide structure from the HLA-B*4405-peptide complex
(TCR free complex) was extracted and its coordinates were super-
imposed onto the coordinates of the peptide in the TCR-HLAP¢P
complex. These coordinates were taken from the PDB structure
3dx8 [13], where the peptide lies in the trans conformation. The
rest of the molecular complex (MHC + TCR) was left untouched.
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Fig. 1. Root mean square fluctuation (RMSF) of C* atoms and root mean square deviation (RMSD) time series of backbone atoms (N, C% C) after fitting the corresponding atom
positions from MD trajectories to the initial coordinates. Results from different trajectories (TCR-HLA®P*? and TCR-HLAP*P) are indicated with different line colors and styles.
(A) RMSF of C* atoms of MHC chain «, (B) RMSF of C* atoms of MHC chain $, (C) RMSF of C* atoms of the peptide, (D) RMSF of C* atoms of chains ¢, g (D,E) of DM1 TCR, (E)
RMSD of backbone atoms of MHC chain «, (F) RMSD of backbone atoms of MHC chain f, (G) RMSD of backbone atoms of the peptide, (H) RMSD of backbone atoms of the TCR’s

chains a and B, respectively (D,E).
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This complex will be referred as TCR-HLA'®P hereafter. Both com-
plexes were treated under exactly the same simulation protocol.

Topology and force field parameters for all atoms were assigned
from the CHARMM27 parameter set [21]. Hydrogen atoms were
added with the VMD program [22] and its autopsf utility. Proton-
ation status of Histidine side chains was determined with the RE-
DUCE program [23]. The protein complexes was centered in a
rectangular box with dimensions 87.9 x 92.4 x 175.6 A%. The box
was filled with TIP3P water molecules and neutralized with the
addition of 27 Na* and 15 Cl™ ions respectively, to approximate a
0.1 mM ion concentration. The minimum distance of any protein
atom to the edges of the simulation box was 17 A in order to avoid
simulation artifacts [24]. Total number of atoms of the whole sys-
tem was 131408.

Non-bonded van der Waals interactions were gradually turned
off at a distance between 10 and 12 A [25]. Long range electrostat-

Table 1

Backbone dihedral angles of the peptide in tpep and cpep trajectories. The values
observed in X-ray structures (PDB codes 3dxa and 3dx8, respectively) are also listed
as a reference. Parentheses indicate the estimated standard deviations with the
Yamartino method (see Section 2 for details).

Dihedral PDB MD
tpep cpep tpep cpep
Glu, ¢ ~79.9 -90.9 ~93.8 (14.9) ~101.7 (13.6)
Gluy ¥ 164.6 169.7 176.4 (8.3) 168.9 (10.9)
Asns ¢ -90.6 -126.5 —83.6 (11.3) -90.2 (16.0)
Asns 126.6 117.6 149.6 (11.6) 96.4 (20.9)
Leuy ¢ ~95.6 ~109.9 ~97.4 (12.5) 1243 (16.5)
Leuy ¥ 86.9 136.7 107.1 (26.4) 1212 (13.7)
Leus ¢ -84.1 -70.9 —~100.0 (15.3) ~75.3 (12.1)
Leus ¥ 125.1 ~70.6 88.6 (20.2) —55.3 (8.3)
Aspg ¢ -84.9 —-105.6 —83.8 (15.6) —88.7 (9.7)
Asps W 125.9 -353 —77.7 (15.6) —21.8(11.3)
Phe; ¢ 57.2 -535 -107.3 (17.3) —69.8 (10.3)
Phe; Y 26.8 47 40.6 (26.0) 52.3 (12.8)
Valg ¢ -85.7 —67.6 —92.6 (16.6) ~97.4 (13.4)
Valg 118.1 113.7 86.4 (15.3) 83.9 (15.3)
Argo ¢ ~148.0 -143.3 ~117.5 (15.0) -106.7 (14.0)
Argo 156.6 153.1 155.9 (14.1) 122.5 (15.2)
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ics were calculated with the PME method [26]. Non-bonded forces
and PME electrostatics were computed every second step. Pair list
was updated every 10 steps. Bonds to hydrogen atoms were con-
strained with the SHAKE method [27] allowing a 2 fs time step
for integration. Each system was initially subjected to energy min-
imization with 5000 steps. The temperature of the system was
then gradually increased to 310 K, with Langevin dynamics using
the NVT ensemble, during a period of 3000 steps, by stepwise reas-
signment of velocities every 500 steps. The simulation was contin-
ued at 310K for 200000 steps (400 ps). During minimization and
equilibration phases, protein backbone atoms (N, C* C’, O) were re-
strained to their initial positions with a force constant of
50 kcal mol~'A=2. The system was equilibrated for another
400 ps with the force constant reduced to 5 kcal mol~! A2, Finally,
400 ps of NVT simulation at 310 K was performed with total elim-
ination of the positional restraints. The simulations were passed to
the productive phase, by applying constant pressure with the
Langevin piston method [28]. Pressure was maintained at 1 atm
and temperature at 310 K. Results are based to a period of 20 ns
of these isothermal-isobaric (NPT) runs. Snapshots were saved to
disk at 1 ps interval for further structural analysis.

2.2. Trajectory analysis

Trajectory analysis of backbone dihedral angles, non-bonded
interactions, etc., was performed with the Eucb [29,30] software
package. g-Turn classifications were based on geometrical charac-
teristics of the backbone conformation [31]. Initially, a f-turn was
accepted if d(C! —Ci3) <7A and |o(CP —Cly —Cly —Cly) |<
90°, where d is the distance and « is the dihedral angle between
the corresponding atoms. Further classification of the g-turn was
based on hydrogen bond patterns and backbone dihedral values
of the i+ 1 and i + 2 residues. Appropriate corrections have been ta-
ken into consideration for the calculation of angular/circular statis-
tics [32,33]. Secondary structure analysis was performed with
STRIDE [34]. Structural figures were prepared with PyMOL
(http://www.pymol.org).
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Fig. 2. Ramachandran maps of the backbone dihedral angles (¢, ) of the Leu5-Asp6 region of the peptide. The maps obtained from the pMHC/TCR trajectory are plotted in
the right column, while the maps obtained from the left column are plotted in the left column. Dihedral data values have been extracted for 20000 frames of the trajectories
and they have been binned every 10°. Backbone dihedral angle i/ is plotted horizontally while dihedral angle i/ is plotted vertically. The color sidebar indicates the percentage

of frames in each bin.
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2.3. Dihedral principal components analysis

Dihedral principal components analysis [35,36] of the peptide
was performed with the Carma [37] software package.

2.4. MM-PBSA calculation of AGpinging

The binding free energy of the association of two molecules
(A+B — AB) can be estimated, according to the MM-PBSA ap-
proach [38,39]. In the current study, the last 10 ns were used for
obtaining trajectory averages, assuming that equilibrium was
reached after the first 10 ns of the simulation. 10000 structures
were utilized for the calculation of SASA and molecular mechanics
calculations, while 50 structures (one every 200 frames) were used
for the calculation of the G with the APBS [40,41] software. En-

solv

tropy terms were not included in the current calculations.

3. Results
3.1. Backbone dynamics of the peptide

Root mean square fluctuation (RMSF) of C* atoms during MD
trajectories and time evolution of root mean square deviation
(RMSD) of backbone atoms (N, C* (') are presented in Fig. 1. In
general, it can be seen that both trajectories were quite stable dur-
ing the 20 ns of molecular dynamics simulations.

All protein chains in the TCR-HLA®P*? complex showed lower
RMSD values than the TCR-HLA'? complex. The difference, as it
is revealed form the time evolution plots was approximately 1 A.
The value itself is not that big. However, the fact that the peptide,
the MHC molecule and TCR, all showed as increased flexibility in
the TCR-HLA'*P is notable. Since the difference between the two
simulated complexes was only a cis/trans peptide bond at the
Leu5-Asp6 region then the observed increased flexibility in the
TCR-HLA"*®P can be ascribed to this conformational transition.

Table 1 lists the values of backbone dihedral angles of residues
2-9 of the peptide, observed in the X-ray structures, as well as the
corresponding average values from the TCR-HLA®P®P and TCR-
HLAP®P trajectories. A notable difference in peptide’s backbone
dihedral angles is the opposite sign of the y/ dihedral angle of res-
idue Leu5. The corresponding value averaged at 88.6° and —55.3°
during the TCR-HLA®*P and TCR-HLA'™®P. Thus, differences of
approximately 145° have been recorded, indicating a major confor-
mational difference in this region of the peptide. The correspond-
ing difference in the X-ray structure is 175°. The difference in
backbone dihedral angles around the Leu5-Asp6 region is high-
lighted in Fig. 2.

The most striking feature of the backbone’s conformational
transition after the TCR binding of the pMHC binding was the cis
peptide bond observed in pMHC/TCR structure, at position Leu5-
Asp6 (PDB code 3dxa). The same peptide bond was found in trans
isomerization state in pMHC complex (PDB code 3dx8). This is the
first observation of such an isomerization in peptide’s structure
after TCR binding of a pMHC complex, and its occurrence must
be noted. However, this can not be generalized as a global property
of the DM1 T-cell receptor. Most likely, this is an allele dependent
feature [14]. Fig. 3 show the probability density of the Leus w angle
with values obtained from the pMHC and pMHC/TCR trajectories.
As it can be expected, the w angle did not show any transition.
Non-proline cis peptide bonds are relatively rare in proteins and
peptides [5]. Moreover cis peptide bonds in Leu-Asp fragments
are particularly rare [3]. From this point of view, the cis-trans
isomerization of the Leu5-Asp6 peptide bond is rather unexpected,
particularly due to the restrained position of the peptide into the
MHC’s binding groove, which leaves pretty much less space for
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Fig. 3. Probability density plot of the Leu5  angle of the peptide in cpep and tpep
trajectories.

movement than the free state of the peptide in a solution. Taken
into consideration that this region of the peptide lies in the heart
of pMHC/TCR interaction [13], the proposition that the TCR is
responsible for this isomerization comes out as logical conse-
quence of this interaction. Thus, the T-cell receptor can only be
adapted on the pMHC interface, but it can trigger major conforma-
tional transitions at the binding interface.

Analysis of the secondary structure of the peptide’s structure
with the STRIDE program [34] revealed that the peptide remained
in p-turn conformational state in the Leus-Valg region. Although
this p-turn was not accompanied by a stabilizing hydrogen bond
(type IV turn), it is proposed that the term “turn” to be used in-
stead of the “bulged” conformation, as this secondary structure
plays important role in peptide’s recognition in immunological
complexes [42,43]. The p-turn remained in presence for approxi-
mately 95% of the trajectory frames in both pMHC/TCR complexes.

3.2. Dihedral angle principal component analysis

Dihedral angle principal component analysis has been applied
in order to explore the energy landscape of the peptide in TCR-
HLAP®P TCR-HLA™*P complexes. Fig. 4 shows the projection of
the backbone dihedral angles of the peptide on the planes of the
first three principal components. The main difference between
the two complexes is that in the TCR-HLAP*P case a dominant con-
formation can be observed, which is not the case in the TCR-HLA"
PP trajectory. A sufficient sampled single-stated structure should
lead (in such projections) in a two dimensional Gaussian-type
graph, centered at the origin. This is pretty much what one can
observe in the TCR-HLAP®P case. However, the TCR-HLAP®P trajec-
tory (bottom row) deviates significantly from this representation.
It is clearly stated that the peptide sampled two to three distinct
conformational states that differed form those of the TCR-HLA®P
trajectory. These projections corroborate the previously analyzed
Ramachandran maps and backbone dihedral angle analysis of
the peptide in the TCR-HLA®**P and TCR-HLA"™®P complexes
respectively.

3.3. Interactions at the pMHC/TCR interface

Fig. 5 show the time evolution between the number of hydro-
gen bonds between various parts of the molecular complexes. As
it can be seen from this figure the interactions between MHC
chain « and TCR chains o, g (parts (A) and (B), respectively) are
approximately the same. Interestingly, during the second part of
the trajectory, the number of hydrogen bonds in TCR-HLA'*eP
complex exceeded slightly the corresponding number of the
TCR-HLAP®? complex. What really different between the two com-
plexes was the number of hydrogen bond interactions between the
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Fig. 4. Dihedral principal component analysis of the peptide. All diagrams shown in this figure are pseudo-color representations of density functions corresponding to the
projections of the fluctuations of the peptides backbone dihedral angles (¢, ) on the planes of the top three eigenvectors. The density function shown is AG = —kgTIn(p/pmax)
where kg is the Boltzmann constant, T is the temperature in Kelvin, and p and p;,. are probabilities obtained from the distribution of the principal components for each
structure (frame) from the corresponding trajectory. The AG values obtained from this procedure are on an arbitrary scale in the sense that they depend on the binning
procedure used for calculating the p and p,,q values. For all diagrams of this figure, the raw data were binned on a square matrix of size N/2, where N is the number of frames

of the corresponding trajectory.

peptide and the and «, 8 chains of the TCR (parts (C) and (D) of
Fig. 5, respectively.) Thus, while the TCR-HLAP*P complex showed
remarkably constant hydrogen bond interactions, the TCR-HLA"P®P
complex exhibited a gradual loss of hydrogen bond interactions
between the peptide and the TCR. This fact was observed for both
chains of TCR. Approximately 3-4 hydrogen bonds were lost from
peptide/TCR« and peptide/TCRp interfaces. Although the time scale
of this simulation work might not be long enough to address the
full dynamics of such a big protein complex, the trend in destruc-
tion of the hydrogen bond network is clearly and undoubtedly
observed.

Taking all of these interactions additively, one can lead to part
(E) of Fig. 5, where the total number of hydrogen bond interactions
are plotted against simulation time. The difference in this number
between the TCR-HLAP*P and TCR-HLA"*P complexes is also high-
lighted (green dashed line).

Another indication of the instability of the pMHC/TCR interac-
tion in the TCR-HLA'™®P complex comes from the hydration of
the peptide. Although, the resolution (3.5A) of the original
complex did not allow the identification of water molecules in
the X-ray structure, the evidence provided here corroborates the
hypothesis that the TCR-HLA'*®P s relatively unstable in compari-
son with the TCR-HLAP®P complex. Part (F) of the Fig. 5 displays
the time evolution of the hydrogen bonds between peptide resi-
dues in the region Glu2-Arg9. N- and C-terminus residues were
excluded from the current analysis due to their proximity with
the bulk solvent. The time series of this quantity was found pretty
stable in the TCR-HLAP*P complex, but it showed a constant slight
increase over simulation time. The increased hydration of the pep-
tide, which lies in the heart of pMHC/TCR interaction interface, is
strongly indicative of the destruction of this interface. The peptide

prefers the solvent interaction, which leads to a loss of the binding
interface. This observation is in line with the results discussed in
the previously, where the decrease in pMHC/TCR interactions were
shown.

3.4. Buried surface area analysis

The loss in hydrogen bond interaction contacts can be pretty
well summarized by plotting the buried surface are between
the pMHC and TCR parts of the TCR-HLA®P®P and TCR-HLA'"®P
complexes, as it is shown in the Fig. 6. Both complexes, exhibited
approximately the same BSA value during the first part of the
simulation. However, the BSA time series significantly diverged
in the TCR-HLAP®P and TCR-HLA"®P cases during the second part.
The loss of the BSA, which is directly connected to the binding
strength, in remarkable agreement with the loss of the hydrogen
bond interactions and the hydration of the peptide in the TCR-
HLA'™®P case. Thus, accumulated evidence is provided that the
TCR-HLA'"®P complex is relatively unstable and that DM1 TCR pre-
fers to bind the HLA-B44-peptide complex with the Leu5-Asp6
peptide bond in the cis conformation.

3.5. Energetic analysis of pMHC/TCR interactions

The structural observations of the instability of the TCR-HLA'PP
are very well reflected in the energetic analysis of the complexes.
Computation of the AGpj,q of the pMHC/TCR complexes with the
mm-pbsa method revealed the value of —188.3 kcal mol~! in the
TCR-HLA'"®P, The corresponding value of the TCR-HLAP®P was
found —229.3 —188.3 kcal mol~!. Although the accuracy of the
these values can be disputed, the trend is in perfect agreement



490 A. Stavrakoudis/FEBS Letters 585 (2011) 485-491

0 2 4 6 8 10
Time (ns)

12 14 16 18 20

Fig. 5. Hydrogen bond interactions at the pMHC/TCR interface. Time series of total
number of hydrgen bonds found in: (A) between MHC chain o and TCR chain «, (B)
between MHC chain o and TCR chain B, (C) between peptide o and TCR chain «, (D)
between peptide and TCR chain $, (E) between pMHC and TCR, the green line also
indicates the difference found between the TCR-HLAP®*P and TCR-HLA™®P trajec-
tories, (F) between the peptide (residues 2-9) and water molecules, the green line
also indicates the difference found between the TCR-HLA®P and TCR-HLA'™®P
trajectories.
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Fig. 6. Buried surface area time evolution in TCR-HLA®®? and TCR-HLA"™*" MD
trajectories, of pMHC/TCR interface.

with the structural observations and reveals again the preference
of DM1 TCR for the cis peptide bond conformation in the pMHC
complex.

4. Discussion

Cis-trans isomerization of the bound peptide in pMHC/TCR
complexes is a rare phenomenon, that is presented here for the
first time. Based on TCR-HLA-B*4405EENUPFVRE - and  HLA-
B*4405EENLLDFVRE ¥ _ray structures, two 20 ns molecular dynamics
trajectories have been employed, in order to elucidate the struc-
tural and energetic features of this conformational transition. De-
spite the energetic cost of cis-trans isomerization, the T-cell
receptor can introduce such a conformational transition to a pep-
tide bound to HLA-B*4405 molecule.

Energetic analysis of the two complexes revealed some interest-
ing features about the preference of the DM1 TCR for a pMHC com-
plex with the Leu5-Asp6 peptide bond in cis conformation. The
AGping has been found considerably lower in TCR-HLAP? than
in TCR-HLA'"®P complex respectively. A single dihedral angle
differentiation is a small variation in a complex of 825 residues,
however, it effects critically the energetics of binding between
the TCR and pMHC complex. The findings from MM-PBSA results
are consistent with three other critical facts: (a) the decrease in
the buried surface are at pMHC/TCR interface, (b) the decrease in
hydrogen bond interactions between pMHC/TCR interface and (c)
the significant increase in the hydration of the peptide. All these
factors corroborate the hypothesis the TCR-HLA'PP complex is rel-
atively unstable and that the cis peptide bond in the Leu5-Asp6 re-
gion in the energetically favourable conformation of the peptide in
the pMHC/TCR complex. The presence of a relatively rigid confor-
mation of the peptide in TCR-HLAP*P complex is also consistent
with a more favourable interaction mode. The cis isomerization
state of the Leu5-Asp6 bond in pMHC/TCR complex was also
accompanied by a beta-turn formation in the Leu5-Val8 region.
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