Eurostat
Managing eurostat data with R
Athanassios Stavrakoudis
Begin
In this section we will examine Eurostat’s datasets. First, as an example we will compare goverment spending in research and development.
Load the required libraries:
RnD
Here we are going to examine the goverment pending on research and development. The table tipsst10 holds the corresponding data.
We can read the dataset by calling the get_eurostat function and we can store the results to a variable (here named rnd):
We can examine the column names of the table (data frame) rnd:
## [1] "sectperf" "unit" "geo" "time" "values"
Or we examine the domain values of its columns:
## # A tibble: 1 x 1
## sectperf
## <fct>
## 1 TOTAL
## # A tibble: 2 x 1
## unit
## <fct>
## 1 MIO_NAC
## 2 PC_GDP
We can filter the dataset, thus we can restrict it to specific rows:
## # A tibble: 18 x 5
## sectperf unit geo time values
## <fct> <fct> <fct> <date> <dbl>
## 1 TOTAL PC_GDP EL 1995-01-01 0.42
## 2 TOTAL PC_GDP EL 1997-01-01 0.43
## 3 TOTAL PC_GDP EL 1999-01-01 0.570
## 4 TOTAL PC_GDP EL 2001-01-01 0.56
## 5 TOTAL PC_GDP EL 2003-01-01 0.55
## 6 TOTAL PC_GDP EL 2004-01-01 0.53
## 7 TOTAL PC_GDP EL 2005-01-01 0.580
## 8 TOTAL PC_GDP EL 2006-01-01 0.56
## 9 TOTAL PC_GDP EL 2007-01-01 0.580
## 10 TOTAL PC_GDP EL 2008-01-01 0.66
## 11 TOTAL PC_GDP EL 2009-01-01 0.63
## 12 TOTAL PC_GDP EL 2010-01-01 0.6
## 13 TOTAL PC_GDP EL 2011-01-01 0.67
## 14 TOTAL PC_GDP EL 2012-01-01 0.7
## 15 TOTAL PC_GDP EL 2013-01-01 0.81
## 16 TOTAL PC_GDP EL 2014-01-01 0.83
## 17 TOTAL PC_GDP EL 2015-01-01 0.97
## 18 TOTAL PC_GDP EL 2016-01-01 1.01
rnd %>%
filter(unit == 'PC_GDP' & geo %in% c('EL', 'PT')) %>%
ggplot(aes(x = time, y = values, colour = geo)) +
geom_line(size = 1.2) +
theme_economist()
Plot the time series data:
rnd %>%
filter(unit == 'PC_GDP' & geo %in% c('EL', 'PT', 'CZ', 'BE')) %>%
mutate(label = if_else(time == max(time), as.character(geo), NA_character_)) %>%
ggplot(aes(x = time, y = values, colour = geo)) +
geom_line(size = 1.2) +
geom_label_repel(aes(label = label), nudge_x = 1, na.rm = TRUE) +
scale_color_discrete(guide = FALSE) +
theme_economist() +
xlab("Time") + ylab("% GDP in RnD") +
theme(text = element_text(size = 18))